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Abstract

The extension of the baryon transport code (BRYNTRN) for use

in space radiation dose analyses for very large shield thicknesses is

made possible by improving the numerical algorithms. The efforts were

concentrated in obtaining more accurate, yet efficient, interpolation and

integration methods at each local computational step, and in optimizing

the grid distributions. A brief discussion of the nucleon transport

theory and propagating formula is also given in conjunction with the

analysis of error propagation which reveals the need for minimizing the

local truncation errors. Sample calculations were made to verify the

new algorithms. An accuracy of approximately 5 percent for a shield

thickness of 150 g/cm 2 was found when a minimal 30-point energy grid

was used. This accuracy was far superior to the results obtained by using

the old algorithms where the solutions could be an order of magnitude

different when a reasonably large number of grid points were used. The

propagating step size was chosen such that the perturbation theory error

matched the improved numerical accuracy.

Introduction

The recently developed, coupled neutron-proton

baryon transport computer code (BRYNTRN)

(ref. 1) using a deterministic approach for solving

space radiation transport problems has been shown

to be a convenient tool for the analysis of a shield-

ing requirement against space protons for the future

NASA manned space missions (refs. 2 and 3). The

code has been used mostly to predict doses received

by the astronauts inside a spacecraft of certain nom-

inal thicknesses or in a storm shelter of a practi-

cally achievable quantity of mass. The accuracy of

such analyses conducted by employing BRYNTRN

can be assessed by the recent study (ref. 4) in which
BRYNTRN and Monte Carlo calculations with shield

thicknesses up to 30 g/cm 2 were compared and found

to be within 10 percent.

The propagated error for a space-marching code
such as BRYNTRN can become overwhelmingly

large when the required number of computational

steps increases. With the step size restricted to

ensure that the perturbation series (ref. 5) will

converge, BRYNTRN with existing numerical algo-

rithms has been found to be quite satisfactory in

marching through a thickness of 30 g/cm 2 or so.

However, there are some applications that require

the number of marching steps to increase enormously.

For example, predicting the dose received by an as-

tronaut in a very slender body like the Space Shut-

tle requires radiation transport calculations through
rays up to 150 g/cm 2. Also, predicting radiation

hazards for the passengers on a commercial sub-

sonic high-altitude aircraft involves a radiation trans-

port through the Earth's atmosphere of at least
200-300 g/cm 2 (refs. 6 and 7). In such cases, the

number of marching steps becomes so large that the

propagated (accumulated) error can distort the re-
sults or even destabilize the computation.

The present study places efforts on minimizing

the local numerical errors of the existing

BRYNTRN so as to reduce the propagated error and

allow the code to be extended for use in space radi-

ation application where the shield thickness is very
large. The numerical algorithms will be improved

to minimize the error but not to compromise the ef-

ficiency of the code. The computational step size
will be examined and its maximum will be estab-

lished so that the error from the perturbation tech-

nique will watch the improved accuracy of the new

code. Sample calculations will be made to validate

the new algorithms. A brief discussion is also given

of the BRYNTRN nucleon transport method, the

space-marching technique, and the propagation of
errors.

Nucleon Transport Method

Since the protons produced by the solar particle events are energetic, the straight-ahead approximation is

applied to the Boltzmann transport equations. The proposed perturbation theory (ref. 5) and the subsequently

developed numerical technique (ref. 8) for solving the one-dimensional charged-particle transport equation



havebeenextended(ref.9) to thecoupledneutron-protontransportequationsin BRYNTRN.In thefollowing
discussion,a one-dimensionalcharged-particletransportproblemwill beconsideredfirst for the purposeof
presentingthenumericalproceduresanderroranalyses,andthefinal formsof propagating(space-marching)
algorithmsfor thecoupledneutron-protontransportequationswill begiven.

Charged-Particle Transport

TheBoltzmannequationforprotontransportin thestraight-aheadapproximationisgivenas

[ 00x _--ES(E) + a] ¢(x, E)=/E x_ f(E,E') ¢(x,E') dE I (1)

where S(E) is the proton stopping power as a function of energy E, a is the macroscopic interaction cross

section which we presently take as energy independent, ¢(x, E) is the nucleon fluence spectrum at distance x,

and f(E, E') is the production secondary-particle spectrum by the primary particle of energy E _. Using the
definitions

_0 Er = dE'/S(E')

¢(., r) = S(E) ¢(x, E)

(2)

(3)

and

](r, r') = S(E) f( E, E') (4)

allows equation (1) to be written as

Ox Or + a ¢(x, r) = ](r, r') ¢(x, r') dr' (5)

The advantage of equation (5) over equation (1) is that derivatives of ¢(x, E) with respect to E display large

variations at low energy and are difficult to approximate numerically, whereas ¢(x, r) is well-behaved at all r

values and approaches a constant at small values of r. The differential operator of equation (5) may be inverted
to yield

/0 /r_(z, r) = _-_x _(0, r+x) + dz e-°z drI ](r+z, r') ¢(.-z, r') (6)
+z

where the boundary condition is

¢(0, _) = S(E) ¢(0, E) (7)

"A propagating algorithm for equation (6) is found by noting that

h ff¢(:_+h, r) = e -ah ¢(x, r+h) + dz e -az dr' ](r+z,r'+z) ¢(x+h-z,r'+z) (8)

which can be simplified by using

¢(.+h-z,r) _ e-_(h-z) ¢(_, r+h - z) + O(h) (9)

which yields

dz dr' ](r+z, r' +z) ¢(x, rI +h)
Jo

(10)



with theorderof h2, where h is the step size. Equation (10) is accurate for distances such that ah << 1 and

may be used to relate the spectrum at some point x to the spectrum at x + h. Therefore, one may begin at

the boundary (x = 0) and propagate the solution to any arbitrary interior point using equation (10).

The secondary-source spectra f(r, r t) in the integral portion of equation (8) are of the form

f(r, r I) _ ae -at + ce _(r-r') (11)

where the coetficients a and 7 are slowly varying functions of r _, c is related to the quasielastic cross section,

and a is determined by the normalization

r !

fO ](r, rt)dr = a

The first term corresponds to knockout nucleons and evaporation particles so that ar _ >> 1. The second term

corresponds to the quasielastic scattered primary such that _r r << 1. Typically, a -_ 1 _ 10 cm2/g and

__ 10 -3 --* 10 -2 cm2/g. Equation (11) will be used later when considering the simplification of the numerical

procedure.

Error propagation. In considering how errors are propagated in the use of equation (10), the error is

introduced locally by calculating ¢(x, r+h) over the range (energy) grid. Limiting our current analysis to the

first term of equation (10), at each range grid r i it is defined that

¢(x+h, ri) = e -ah _(x, ri+h) (12)

We denote the truncation error ei introduced in the interpolation procedure to the interpolated value ¢int as

_b(x, ri+h) = ¢int(X, ri +h) + q(h) (13)

After the kth step from the boundary, the numerical solution is

k-1

¢(kh, ri) = e -ah _bint [(k-1)h, ri+h ] + E e-_(k-e)het(h)
g=0

(14)

Suppose that 0 _< et(h ) < e(h) for all indexes g; then the propagated (prp) error is bound by

k-1 k-1

£prp (k) = E e-cr(k-tC)h ee(h) <- e(h) E e-a(k-g)h
g=O g=O

(15)

We note that
k-1

E e-akhe_hg 1 (l-e-_kh)
g=O

since ha << 1. Clearly the propagated error on the kth step is bound by

(16)

e(h) (1-e -akh)_prp(h) < (17)

where e(h) is the maximum error per step. With increasing values of k, the propagated error grows each step

to a maximum value of e(h)/ha. For a typical situation, if we take ha = 0.01 and the step size h = 1 g/cm 2,

the propagated error increased by extending the transport calculation from 30 to 150 g/cm 2 is three times as

large (i.e., eprp __ 78 e(h) instead of eprp _ 26 e(h)). Evidently, we need to control the truncation error at each

step.



Numerical procedure. We now consider numerical methods for the integral portion of equation (8). We

will make use of the form of the interaction given by equation (11) for which an analytic solution can be easily

obtained. As shown in connection with equation (10), equation (8) may be rewritten as

/oh¢(x+h, r) = e -ah ¢(x, r+h) + e -ah dz dt ae -a(r+z) _b(x, t+h)

+e-°hfOh f_dz dt ce_(r-t-Q) ¢(x,t+h) + O(h 2) (18)

where Q represents the average energy shift of the projectile producing the secondary particles across the

interval x to x + h and t is a dummy variable. In principle, a, a, c, and 7 are dependent on projectile energy

as well and would be evaluated using the same Q value (ref. 1). With the analytic forms in equation (18) we

may perform the integrals as

and

,(x+h,r): e-°h,(x,r+h)+e-oh dt° [ ]-- e-C_r--e -a(r+h) ¢(x,t+h)
O_

o_+ e -°h dt hce _(r-t) _(x, t+h) + O(h 2)
Jr

(19)

The integral terms of equation (19) can be written in terms of the cumulative secondary spectra denoted as

In particular,

j_0 r
Fa(r, t) = ae -az dz

j_o r
Fc(r, t) = ce _(z-t) dz

(20)

(21)

a
[e -at- e -a(r+h)] = Fa(r + h, t +Q) - Fa(r, t +Q) (22)

O_

[' ]che _(r-t-Q) = [Fc(r+h, t+O) - Fc(r, t+Q)] 1 - _2I(h - 2Q) + O(h 2) (23)

which may now be substituted into equation (19) to obtain

¢(x+h,r) = e -°h ¢(x,r+h) + e -°h dt [Fa(r+h,t+Q) - Fa(r,t+Q)] ¢(x,t+h)
or

+ e -°h dt [Fc(r+h, t+Q) - Fc(r, t+Q)] ¢(x, t+h) + O(h - 2Q) + O(h 2) (24)

The second-order accuracy is maintained only if Q is chosen at the midpoint of the interval (i.e., Q = h/2).

Additional details of this analysis can be found in reference 1. The propagation equation is implemented as

I¢(x+h,r)---e -°h _(z,r+h)+ dt P h,r,t+ ¢(x,t+h) (25)

where

9_0hF'(h, r, t) = ](r+z, t) dz

- F(r+h,t) - F(r,t) (26)

4



andisrelatedto thecumulativeenergyspectrumby

f0 _(r)Fir , t) = f(E, E') dE

where e(r) is the energy associated with the residual range r and E' = e(t).

Coupled Baryon Transport

The coupled baryon transport equations axe of the form

(27)

fjk(E, E') ¢k(X, E') dE' (28)

where vj is the range scaling parameter, S(E) is the proton stopping power, aj(E) is the total cross section,

Cj(x, E) is the differential flux spectrum of type j baryons, and fjk(E, E') is a differential energy cross section
for the redistribution of particle type and energy. Utilizing the definitions

and

allows equation (28) to be written as

fo Er = dE'/S(E')

Cj(x, r) = S(E) Cj(x, E)

]jk(r, r') = S(E) fjk(E, E')

(29)

(30)

(31)

[o 0j_ oj(r)]_j(x,r)= f (z2)- + _k jr°° ]jk(r'r')Ck(x'r')dr'

which may be rewritten (refs. 5 and 10) as

-Cj(x,r) = e-(J (r'x) _bj(O,r+vjx) + Z e-(j(r,z) fjk(r+_,jz, r') _#k(x--z,r') dr' dz (33)
k Jr

where the exponential is the integrating factor with

_j (r, t) = aj (r + vjt') dr' (34)

In case of j = n (neutron), (j(r, t) reduces to an(r)t since un = O.

Rather simple numerical procedures follow from equation (33). Noting that the first-order nature of

equation (28) allows Cj(x, r) to be taken as a boundary condition for propagation to larger values of x, one

may approximate equation (33) as

Cj(x+h,r) = e-iJ (r'h) Cj(x,r+vjh) + Z e-_J(r,z) fjk(r+r,jz, r') ¢(x+h-z,r') dz dr' (35)
k

which may be used to develop a numerical stepping procedure. Equation (35) has provided the basis for a

number of new transport codes for baryons of mass number greater than or equal to 1 (ref. 8). These codes

are now being extended to couple with the meson fields and to the negative baryon number fields.

5



If h is sufficiently small that

then, according to perturbation theory (ref. 5),

aj(r') h << 1 (36)

Ck(x+h-z, r') _ e-c_(r'h-z) Ck[x,T'+-k(h-z)]

which may be used to approximate the aforementioned integral of equation (35).

(37)

and the solution is written as

The corresponding singular terms are

CA0, T) = 6jS(r0 - _)

Cj(x,r) =¢jo(x,r) +_j(x,r)

Ck0(x,_) = e-¢k(r'x)6(_0- _ - "kx)% (40)

The regular terms of equation (35) for k = p may be written as

/0 zL¢p(x-bh, r) = e -@(r'h) Cp(x,r+h) + dz e -_p(r'z) fpj(r + z,r') [_bjo(x+h-z,r' )

3

+ Cj(x+h-z,r')] dr' (41)

and the regular terms for k = n are

/o //Cn(x+h,r) = e-_n(_)h _,_(x,r) + dz _-_n(_)z__, ]_j(r,r') [e3o(z+h-z,r')
J

+ Cj(x+h-z,r')] dr' (42)

The singular contribution under the integrals of equations (41) and (42) can be evaluated with equation (40),

and the approximations in equations (36) and (37) can be applied to find

+exp {-lap(r)+ an(ro)] h} F'pn(h,r, ro) 5nj exp[-an(ro)x]

+ cc exp + h _Ppp(h, r, rl+ r/+h) dr I

and

6

(38)

(39)

For many cases of practical interest (e.g., accelerator studies), monoenergetic particle beams are used, and

thus separation of the singular terms from the solution becomes convenient. The initial beam of type J particles

of energy E0 (where r0 = R(Eo)) is taken as



+ h exp -[an(r)

+ h exp -[an(r)

dr !

(44)

where r_ = r0 - x - _ and fi' is related to the cumulative spectrum F as given by

_0h_'ij(h,r,r') = fij(r+z,r') dz

- Fij (r T h, r') - Fij (r, r') (45)

with

Fij (r, r') --]0e(r)= :ij(E, E') dE (46)

where _(r) is the energy associated with residual range r and E' = e(rl). Equations (43) and (44) are evaluated

by establishing an x-grid at which _bj(xm,r) is evaluated where h is the distance between each successive
evaluation. The integral over r / is accomplished by establishing an r-grid (and the corresponding E-grid) and

using

jfr a_ _ /r/+lg(rn,r') _j(xm,r') dr' _ Egn(rn,_t) Cj(xm,r) dr' (47)
n _=n J r_

where r e = (r e + re+l)�2 , and the series terminates at the highest g value in the r-grid which is related to the

maximum range (energy) cutoff rmax.

Numerical Algorithms

The error analysis shown earlier has demon-

strated the need for controlling the local truncation

errors so that the application of BRYNTRN can be

extended to a very thick shield. Although the anal-

ysis was limited to the attenuation of the primary

particles (the first term of eq. (10)), the contribution

of error from evaluating the generation of secondaries

is also significant. Restricting our scope presently to

the space application, we focus only on the numeri-

cal algorithms in treating the first, fourth, and fifth

terms of equations (43) and (44). The first term re-
quires interpolation of ¢, the rest involve both in-

terpolation and numerical integration. Furthermore,
since the number of range (energy) grids is limited

by the computational efficiency, the distribution of

grids should be optimized.

The existing interpolation algorithms in the code

consist of either the second-order Lagrange methods

or a scheme assuming a solar-proton-fluence spec-

trumlike function for _b with two parameters deter-

mined by the two neighboring points. These algo-
rithms were adequate for a propagating distance of

approximately 30 g/cm 2 (ref. 4). To improve further,

a choice is made from a host of interpolation methods

existing in the literature (refs. 11-13). Among them,

a good candidate is the third-order Lagrange method

with the four neighboring grid points placed evenly

on both sides of the specified (interpolated) point. If

the distribution of grids is rather uniform (on a log-
arithm scale that is suitable for the space radiation

spectrum), the error will tend to be the smallest in

the middle interval of all the data points (ref. 11).
The choice of a much higher order Lagrange method

will substantially decrease the efficiency of the code



sincetherearemorethan 10interpolationcallsfor
eachsingle-energypoint at everystep. Otherinter-
polationmethodssuchasthecubicsplinewerecon-
sideredbut discarded.Thesplinesare, in general,
moreaccurate.However,their characteristiclarge
excursions(oscillations)canresultin unpredictable
erroneoussolutions.

The numericalintegrationproceduresare used
not only for evaluatingthe secondaries-generation
terms but also for calculatingthe doseand dose
equivalent.Theexistingprocedureis basedon the
compoundquadratureformulasummingoverall the
subintervalsbetweenthemidpointsofthegrids.The
sameproton-fluencespectrumlikefunctionas that
describedearlierfor an existinginterpolationpro-
cedurewasassumedfor eachinterval. Clearly,this
assumptionhastheadvantageof providinganana-
lytic expressionfor the integrationoverthe subin-
tervals,but it hasless-accurateinterpolatedvalues.
Thenewintegrationprocedureproposedwill retain
thenatureof compoundquadratureformulationand
makeuseof the improvedinterpolationprocedures
mentionedearlier.To replacetheanalyticalintegra-
tion for thesubintervals,asimplenumericalmethod
suchasSimpson'srule issuggested.

In the existingcode,the generationof range
gridsisbasedon theuniformlogarithmenergyspac-

ings.Thischoicewasmotivatedby thefactthat the
solarprotonfluencesareusuallyseveralordersof
magnitudelargerat the low-energyendof thespec-
trum. Also, the main contributionof the doses
usuallycomesfromthelargestoppingpowerat the
low-energyregionwherethe protonsarenearthe
end of their tracks;thereforemorenumericalpre-
cisionisneededfor the low-energyregion.With the
interpolationprocedurereplacedby the third-order
Lagrangemethod,changesmustbemadeto ensure
that the logarithmgridswill be uniformin range
ratherthan in energy.Furthermodificationcanbe
madeto minimizethenumberofgrid pointssothat
theefficiencyof thecodecanbeimproved.

Note that the informationpropagatingthrough
thestepsiscarriedfromtheinterpolatedr i + h points

to the r/-grids of the next step. Since h is usually

taken to be about 1 g/cm 2 and the range grids cover
the scale roughly from 10 -4 to 103 g/cm z, the frac-

tion of grid points below rmi n + h that are not used as

data points in interpolation and that, consequently,
are not carrying information downstream can be sub-
stantial. Hence, the modification can be made to dis-

tribute fewer points below 1 g/cm 2. Note that all the
grid-generation options mentioned here have several

closely spaced points concentrated at the very high
energy end of the logarithm scale.

Results and Discussion

The existing and new algorithms for interpolation and integration, plus various grid-distribution options, are

tested and compared for several solar-flare proton spectra. These spectra are presented as follows (refs. 14-18):

1. The February 1956 solar particle event (SPE):

10°ex 10 ex 
2. The November 1960 SPE:

= 10 ox, ÷
3. The August 1972 SPE:

Cp(>E) = 6.6 x lO s exp (-%0 ]9-q)

4. The August 1972 SPE (King spectrum):

Cp(>_) = 7.9 × 109 exp (-_)

5. A Webber spectrum with 100 MV rigidity:

Cp(>E) = 1.0 x 109 exp [239"l-J(E) ]

6. The August 1989 SPE:

: ×10,0or,[_

where E is the energy (in units of MeV), P(E) = v/E(E + 1876), and Cp(>E) is the proton integral fluence
(in units of protons/cm2).



Sincethe Lagrangemethodsaresensitiveto the
grid distribution,the truncationerrorsintroduced
byinterpolatingthespectrumarecomparedfor var-
iouscombinationsof interpolationproceduresand
grid-distributionoptions.Figures1-5showthefrac-
tionalerrorof interpolatedfunction¢(0,r i + h) at

each ri-grid for the above-listed spectra 1-5, respec-

tively. The interpolating distance h is either 0.5
(figs. l(a)-5(a)) or 1 g/cm 2 (figs. l(b)-5(b)). It is

seen that for all the spectra and h values tested, the

combination of existing (uniform logarithm E) grid
and the second-order Lagrange method results in the

largest error. (Note that although it is not shown
here, the interpolation error for the other existing

algorithm assuming a solar-proton-fluence spectrum-

like function was found to be even larger.) Progres-

sively improved accuracy is seen when the second-

order Lagrange method is replaced by the third-order

method and the uniform logarithm E-grid is replaced

by the uniform logarithm r-grid, and subsequently

by the modified logarithm r-grid. As mentioned ear-

lier, the modified _rid distribution has fewer grid
points below 1 g/cm z in range. Consequently, it gives

less spacing between the data points that are used
for interpolation, thus resulting in better accuracy.

Table 1 lists the maximum percentage error of in-

terpolation for the existing (old) and new methods
(modified uniform r-grid and third-order Lagrange,

respectively). The overall improvement is at least a

factor of 10 to 20 with all the spectra tested.

A comparison is also made of the new and existing

(old) integration procedures. Fractional differences

in the results between analytical and numerical in-

tegration of _ from r i to rmax are shown in figure 6

for the February 1956 SPE spectrum. Drastic im-

provement is seen for the new algorithm with an ac-
curacy of ±0.05 percent or less. This is probably at-

tributed to the improved interpolation method used

in the new integration procedure. The fairly "simple-

minded" numerical integration, such as Simpson's

rule used for the subintervals, is obviously not a con-
cern here.

To test the numerical convergence in solutions ob-

tained by using the new algorithms for interpolation,
integration, and grid generation, sample dose calcu-

lations are made through a very thick shield. Fig-

ure 7(a) shows various components of free-space ab-
sorbed dose as a function of aluminum thickness up

to 150 g/cm 2 for the August 1989 SPE spectrum.

These results are obtained by using the number of

r-grid points N = 30. Similar results obtained with

N ---- 60 and N --- 90 (figs. 7(b) and 7(c), respec-

tively) show practically no difference from those with

N = 30, and therefore convergence is quite evident.

To examine in further detail, the N = 30 and N = 60

results relative to the N = 90 results are compared

for each individual dose component. (See fig. 8.) In

general, it appears that the relative errors increase

as the number of propagating steps increases, as ex-
pected. The maximum relative error for the N --- 60

results is approximately 1.5 percent excluding the

secondary-neutron high-energy heavy ion (HZE) re-

coil dose where there is an oscillatory behavior in

the converging solution as the number of grids in-

creases. The relative error for N = 30 is approxi-

mately 3.5 percent except for the secondary-proton

ionization dose where the ramping error against the

increasing shield thickness is large and reaches about

10 percent. To reduce such ramping, the number of

grid points below 1 g/cm 2 was further reduced for

N = 30 by either changing the grid-generation for-

mula or merely increasing the maximum energy cut-

off from 1000 to 4000 MeV. In both cases, the results
show a considerable reduction in maximum error to

less than 5 percent.

The oscillatory behavior in the converging so-

lutions for the secondary-neutron HZE recoil dose

probably came from the rapidly varying cross-section

data (ref. 1) for neutrons at the low energy. This is
also indicated in the less-smooth distribution curve

of _ for the secondary neutrons at distances farther

from the boundary. (See fig. 9.)

Other results obtained that also show the accu-

racy of the new algorithms are given in tables 2 and 3.

The calculations were intended for predicting the skin

dose received by the aircraft passengers at various

altitudes. For economical reasons_ the results with

N = 60 are available only to a thickness of air of

150 g/cm 2. The difference between the N -- 30 and

N = 60 results is almost negligible.

Another convergence issue that needs to be ad-
dressed is the perturbation series for the nucleon

transport method used here. The perturbation the-
ory requires that ah << 1. Since a = 0.01 cm2/g, we

usually take h = 1 g/cm 2. Although the numerical

error has been reduced considerably to about 5 per-

cent for the large shield thickness, the error from the

perturbation series should also be brought in line.

By varying the value of h down to 0.1 g/cm 2, it

is demonstrated that the solution converges rather

quickly as shown in figure 10. Without sacrificing

much computing time, a step size of 0.5 g/cm 2 ap-

pears to be a reasonable choice for an error of approx-
imately 10 percent for the secondaries. The overall

computing time is found to be about the same as

it was when using the old algorithms for the same
number of grid points. Note that the test for conver-

gence (conducted by the third author) using the old

9



algorithm indicates (see fig. 11) an order-of-magnitude

difference in the secondary-neutron results for large

shield thickness for the same casc as that computed

for figure 7. As mentioned earlier, the old algorithms

were adequate for a thickness up to about 30 g/cm 2

as shown in figure 11, but they should be replaced

with the new algorithms described herein.

Concluding Remarks

The use of the baryon transport computer code

(BRYNTRN) in space radiation dose analyses for

very large shield thicknesses is improved by modi-

fying the numerical algorithms. These include inter-

polation, numerical integration, and grid-generation

procedures. An accuracy of approximately 5 percent

for a shield thickness of 150 g/cm 2 was found when

a minimal 30-point energy grid was used. Future ef-

forts should be placed on improving the nuclear data

base and adding meson contributions.

NASA Langley Research Center

Hamp}on, VA 23665-5225

March 20, 1991
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Table 1. Maximum Error of Interpolation for Existing and New Methods

Maximum error of interpolation, percent, for--

Step size = 0.5 g/cm 2 Step size = 1 g/cm 2

Old New Old New

Spectrum algorithms algorithms algorithms algorithms
-2.09
-3.90

1.16
1.32

.40

0.08
.19
.05
.06
.04

-3.39
4.05
1.90
2.16

.66

0.14
.32
.08
.09
.06

Table 2. Dose in Skin Tissue Behind Various Thicknesses of Air for the February 1956

SPE Spectrum

N denotes the number of grid points used in calculation; ]HZE denotes high-energy heavy ion J

Thickness, Dose with N = 30, Dose with N = 60, Difference,

.g./cm2 Gy Gy percent

Primary-proton ionization

2

20

5O
100
150

2.981
1.220 × 10-]

5.767 x 10-2
3.017 x 10-2

1.731 x 10-2

2.975
1.219 x 10-1

5.763 x 10 -2
3.014 x 10 -2

1.727 x 10 -2

0.19

.ll

.07

.10

.23

Secondary-proton ionization

2
20

50

100
150

3.707 x 10-2
2.011 x 10-2

2.345 x 10-2

2.144 x 10-2
1.717 x 10-2

3.694 x 10-2
1.994 × 10-2

2.325 x 10-2
2.119 x 10-2

1.692 x 10-2

0.35
.82

.84

1.17
1.48

2
20

50
100

150

Secondary-neutron HZE recoil

8.766 x 10-5
1.839 x 10-4

2.805 x 10-4
3.137 x 10-4

2.837 x 10-4

8.762 × 10-5
1.848 x 10-4
2.843 x 10-4

3.209 x 10-4

2.918 x 10-4

0.05
.46

1.35

2.30
2.85
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Table 3. Dose Equivalent in Skin Tissue Behind Various Thicknesses of Air for the
February 1956 SPE Spectrum

N denotes the number of grid points used in calculation; ]HZE denotes high-energy heavy ion ]

Thickness, Dose equivalent Dose equivalent Difference,

g/cm 2 with N = 30, Sv with N = 60, Sv percent

Primary-proton ionization

2

20

50

100

150

4.925

1.418 x 10 -1

6.205 x 10 -2

3.199 x 10 -2

1.826 x 10 -2

4.927

1.418 x 10 -1

6.201 x 10 -2

3.196 x 10 -2

1.823 x 10 -2

0.05

.04

.06

.10

.16

2

20

5O

100

150

Secondary-proton ionization

9.118

2.917

3.105

2.726

2.146

× 10 -2

x 10 -2

x 10 -2

x 10 -2

× 10 -2

9.110 × 10 -2

2.895 x 10 -2

3.080 x 10 -2

2.696 x 10 -2

2.116 x 10 -2

0.09

.75

.80

1.11

1.14

Secondary-neutron HZE recoil

2

20

50

100

150

1.753 × 10 -3

3.678 × 10 -3

5.610 x 10 -3

6.275 × 10 -3

5.675 x 10 -3

1.752 × 10 -3

3.696 × 10 -3

5.686 x 10 -3

6.419 x 10 -3

5.836 × 10 -3

0.04

.47

1.33

2.25

2.77
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O Uniform log E Third
V Uniform log r Third
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X
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-.o3 I I I I I I I /
10-5 10-4 10-3 10-2 10-1 100 101 102 103

Range, g/cm 2

(a) h = 0.5 g/era 2.

Figure 1. Fractional error of interpolating the February 1956 SPE spectrum for various grid distributions and
interpolation methods.
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Figure 1. Concluded.
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(a) h = 0.5 g/cm 2.

Figure 2. Fractional error of interpolating the November 1960 SPE spectrum for various grid distributions and
interpolation methods.
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Figure 3. Fractional error of interpolating the August 1972 SPE spectrum for various grid distributions and
interpolation methods.
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Figure 4. Fractional error of interpolating the August 1972 SPE (King) spectrum for various grid distributions
and interpolation methods.
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Figure 4. Concluded.
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Figure 5. Fractional error of interpolating the Webber spectrum (100 MV rigidity) for various grid distributions
and interpolation methods.
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Figure 6. Fractional error of integrating the February 1956 SPE spectrum using existing and new algorithms.
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Figure 7. Free-space absorbed doses to the August 1989 SPE spectrum as a function of aluminum thickness.
New algorithms.
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Figure 7. Continued.
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Figure 8. Relative errors in doses to those calculated with 90 grid points. Doses are the same as those in

figure 7.

27



Relative
error

.125 --

.100 --

.075 --

.050 --

t

@
©0

.025 q- t

;v
1

0

Grid points, Grid
N type Ema x, MeV

O 30 New 1000
V 60 New 1000

30 Reformulated new 1000

30 New 4000

1 O

?

O

O

0

0

0

0

0

q_ t
t o [

0

t

V V V V V V V V V V V V

'lllIIill,,,lli_l,,zIlj,,,l
25 50 75 100 125 150

Thickness, g/cm 2

(b) Secondary-proton ionization dose.

Figure 8. Continued.

28



Relative
error

.2

-.2

-.4

-.6

-.8

x 101

V

V

Grid points, Grid
N type Emax, MeV

O 30 New 1000
X7 60 New 1000

30 Reformulated new 1000

30 New 4000

O

V
O

1
V

V

0
0 0 0

;

t

v t
_2

V V

0

0
0

0
0

V
V

v ,t, v _ t t

25 50 75 100 125 150

Thickness, g/cm 2

(c) Secondary-neutron HZE recoil dose.

Figure 8. Concluded.

29



Distance,
g/cm2

1016

1012

108

Particlefluence
distribution,g-1

104--

100 _

10-4
10-5

O 0
V 2

-- _, 40
90

L -- -L--L- Lt ¼

r-- T-- I---r-- r--]--7---r-rrrrrrrrrrrr

! I I 1 I I I
10-4 10-3 10-2 10-I 100 101 102

Range, g/cm 2

(a) Primary protons.

103

Figure 9. Distribution of various field components (in transformed coordinates) in aluminum shield at distances
from boundary exposed to the August i989 SPE spectrum. New algorithms.
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Figure 10. Free-space absorbed secondary doses to the August 1989 SPE spectrum as a function of aluminum
thickness. New algorithms with varying step size.
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